Taylor is prime

B. Bodor, G. Gyenizse, M. Maróti and L. Zádori

University of Szeged

AAA103 Tartu, June 9–11, 2023.

Example

The variety \mathcal{SET} is the class of all sets with no basic operations.

Example

The variety \mathcal{SG} is the class of all semigroups $(S; \circ)$ defined by associativity.

Example

The variety SLAT is the class of all semilattices $(S; \land)$ defined by associativity, commutativity and idempotency.

SET and SG are not the same, but every semigroup can be turned into a set, and every set can be turned into a semigroup by defining $x \circ y = x$.

Semigroups cannot be turned into semilattices, because semilattices satisfy the identity $x \land y = y \land x$ and such operation cannot be defined as a semigroup term.

Definition (W.D. Neumann; 1974)

Let Γ be a set of identities over a signature. We say that Γ **interprets in a variety** \mathcal{K} if by replacing the operation symbols in Γ by some term expressions of \mathcal{K} , the so obtained set of identities holds in \mathcal{K} .

Definition

A variety \mathcal{K}_1 interprets in a variety \mathcal{K}_2 , denoted as $\mathcal{K}_1 \leq \mathcal{K}_2$, if there is a set of identities Γ that defines \mathcal{K}_1 and interprets in \mathcal{K}_2 .

- The varieties of Boolean algebras and rings are equi-interpretable.
- The varieties of Sets and Semigroups are equi-interpretable.
- The variety of sets interprets in any other variety.
- Every variety interprets in the variety of trivial algebras $(x \approx y)$.
- Constants c are modelled by unary operations satisfying $c(x) \approx c(y)$.
- $\bullet\,$ The iterpretability relation \leq is a quasi-order on the class of varieties.

Theorem

The class of varieties modulo equi-interpretability forms a bounded lattice, the lattice of interpretability types, with $\overline{\mathcal{V}} \vee \overline{\mathcal{W}} = \overline{\mathcal{V} \amalg \mathcal{W}}$ and $\overline{\mathcal{V}} \wedge \overline{\mathcal{W}} = \overline{\mathcal{V} \otimes \mathcal{W}}$.

Definition

The **coproduct** of the varieties $\mathcal{V} = \mathsf{Mod}\,\Sigma$ and $\mathcal{W} = \mathsf{Mod}\,\Delta$ in disjoint signatures is the variety $\mathcal{V} \amalg \mathcal{W} = \mathsf{Mod}(\Sigma \cup \Delta)$.

Definition

The varietal product of \mathcal{V} and \mathcal{W} is the variety $\mathcal{V} \otimes \mathcal{W}$ of algebras $\mathbf{A} \otimes \mathbf{B}$ for $\mathbf{A} \in \mathcal{V}$ and $\mathbf{B} \in \mathcal{W}$ whose

- universe is $A \times B$,
- basic operations are s ⊗ t acting coordinate-wise for each pair of n-ary terms of V and W.

- O. Garcia, W. Taylor (1984): Lattice of interpretability types of varieties
 - minimal element: sets (equi-interpretable with semigroups)
 - maximal element: trivial algebras
 - the class of idempotent varieties form a sublattice
 - the class of finitely presented varieties forms a sublattice
 - the class of varieties defined by linear equations forms a join sub-semilattice
 - not modular
 - meet prime elements: boolean algebras, lattices, semilattices
 - meet irreducible elements: groups
 - join prime elements: commutative groupoids, trivial algebras
- J. Mycielski (1977): Lattice of interpretability types of first order theories
 - local interpretability
 - distributive

Definition

A strong Maltsev condition is a finite set Γ of equations. A variety \mathcal{V} satisfies Γ iff Γ interprets in \mathcal{V} . Thus strong Maltsev conditions are principal filters generated by finitely based varieties in the lattice of interpretability types.

Examples: having a majority term, semilattice term, Siggers term, Olšák term, Maltsev term, etc.

Definition

A **Maltsev condition** is a descending chain $\Gamma_0 \geq \Gamma_1 \geq \Gamma_2 \geq \ldots$ of strong Maltsev conditions. A variety \mathcal{V} satisfies it if $\Gamma_i \leq \mathcal{V}$ for some $n \in \mathbb{N}$. Thus Maltsev conditions are filters in the lattice of interpretability types.

Examples: having a near-unanimity term, Taylor term, Jónsson terms, Gumm terms, edge term, Hagemann-Mitschke terms, etc.

Conjecture (O. Garcia, W. Taylor; 1984)

2-permutability is prime in the lattice of interpretability types of varieties.

- In 1996 S. Tschantz announced a proof of the conjecture. However, his proof has remained unpublished.
- K. Kearnes and S. Tschantz: 2-permutability is prime in the lattice of interpretability types of **idempotent** varieties. There are no similar results known for *n*-permutability when *n* > 2.
- J. Opršal: for any n ≥ 2, n-permutability is prime in the lattice of interpretability types of linear varieties.

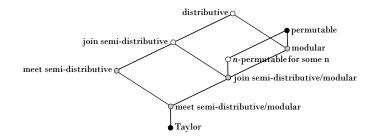
Theorem (G. Gyenizse, M. M. and L. Zádori; 2020)

For $n \ge 5$, n-permutability is **not prime** in the lattice of interpretability types of varieties (polymorphisms of the hexagon poset and majority).

Theorem (G. Gyenizse, M. M. and L. Zádori; 2022)

2-permutability is prime in the lattice of interpretability types of varieties.

Maltsev filters of varieties



- prime Maltsev filters:
 - congruence 2-permutable, $m(x, y, y) \approx m(y, y, x) \approx x$
 - Taylor term, non-trivial idempotent Maltsev condition
- non-prime Maltsev filters:
 - congruence *n*-permutable for some *n*, Hagemann-Mitschke terms
 - (congruence) distributive = join semi-distributive and modular
 - congruence join semi-distributive (K. Kearnes and E. W. Kiss)

Theorem (W. Taylor, 1977; J. Olšák, 2017)

For any variety ${\mathcal V}$ the following are equivalent

- $\mathcal{V}_{id} \leq \mathcal{SET}$,
- satisfies a non-trivial idempotent Maltsev condition,
- has a Taylor-term: $t(x, \ldots, x) \approx x$ and $t(\ldots, x, \ldots) \approx t(\ldots, y, \ldots)$,
- has an Olšák term $t(x, x, x, x, x, x) \approx x$ and $t(x, y, y, y, x, x) \approx t(y, x, y, x, y, x) \approx t(y, y, x, x, x, y)$.

Theorem

The filter of Taylor varieties is prime in the lattice of interpretability types.

Approach: Given two non-Taylor varieties $\mathcal V$ and $\mathcal W,$ find a compatible digraph $\mathbb G$ in both $\mathcal V$ and $\mathcal W$ that does not admit a Taylor polymorphism.

The reflexive 3-cycle $\ensuremath{\mathbb{C}}$

Theorem

A variety is Taylor iff all its reflexive anti-symmetric digraphs are cycle free.

Definition

Let $\mathbb{C} = (\{0, 1, 2\}; \rightarrow)$ be the reflexive directed 3-cycle.

Lemma

There are six essential polymorphisms of \mathbb{C} , the constants and the automorphisms. Thus $\mathbf{C} = (C; Pol(\mathbb{C}))$ generates a non-Taylor variety.

Question: Which non-Taylor variety (reflexive anti-symmetric digraph with a cycle) is the strongest (satisfies the most Maltsev conditions)?

B. Bodor, G. Gyenizse, M. Maróti and L. Zád

Taylor is prime

Non-Taylor varieties with non-trivial Maltsev conditions

Proposition

SET ≤ Pol(C) because of the Maltsev condition u(x) ≈ u(y)
Pol(C) ≤ Pol(C²) because of the Maltsev condition

$$f(f(x,y),f(y,z)) \approx y$$

satisfied by the polymorphism f(x₁x₂, y₁y₂) = x₂y₁ of C².
Pol(C + 1) ≰ Pol(C^K) because of the Maltsev condition

 $e(x) \approx e(y), \quad t(e(x), y) \approx t(y, e(x)) \approx y.$

• $\mathsf{Pol}(\mathbb{G}) \leq \mathsf{Pol}(4\mathbb{C}+4),$ for the reflexive 4-cycle digraph \mathbb{G}

Lemma

A variety is non-Taylor iff it has a compatible reflexive digraph $\mathbb F$ that has $\mathbb C$ as a retract.

- Let \mathcal{V} be a non-Taylor variety
- **F** the free algebra in \mathcal{V} freely generated by $\{x, y, z\}$
- ρ the subalgebra of **F**² generated by {*xx*, *yy*, *zz*, *xy*, *yz*, *zx*}
- $\mathbb{F} = (F; \varrho)$ is reflexive digraph
- $u \rightarrow v$ in \mathbb{F} iff there exists a 6-ary term t in \mathcal{V} so that

$$u(x,y,z) \approx t(x,y,z,x,y,z), \quad t(x,y,z,y,z,x) \approx v(x,y,z)$$

- in particular, if $u \to v$, then $u(x, x, x) \approx v(x, x, x)$
- $\bullet~\mathbb{F}$ has as many (strong) components as there are unary terms in $\mathcal V$
- $\mathcal{V}_{id} \leq \mathcal{SET}$, so there is a graph homomorphism form the idempotent component of $\mathbb F$ to $\mathbb C$
- $\mathbb C$ is reflexive, so this can be extended to an $\mathbb F\to\mathbb C$ homomorphism
- so $\mathbb C$ is a graph retract of $\mathbb F$
- $\bullet \ \mathcal{V} \le \mathsf{Pol}(\mathbb{F}) \ \text{and} \ \mathsf{Pol}_{\mathsf{id}}(\mathbb{F}) \le \mathcal{SET}$

Theorem

For any variety \mathcal{V} the following are equivalent:

- \mathcal{V} is non-Taylor,
- there are sets K_t ($t \in T$), not all empty, such that $\bigcup_{t \in T} \mathbb{C}^{K_t}$ is a compatible digraph in \mathcal{V} ,
- for any sufficiently large infinite cardinals κ and τ the digraph $\bigcup_{\mu \leqslant \kappa} \tau \mathbb{C}^{\mu}$ is a compatible digraph in \mathcal{V} .

Corollary

The filter of Taylor varieties is prime in the lattice of interpretability types.

Problem

Describe the interpretability lattice for the varieties generated by the disjoint union of $\mathbb{C}\text{-powers}.$

Problem

Is there a direct connection between ${\mathbb C}$ and the Olšák term?